PARTIE: SCIENCES PHYSIQUES

EXERCICE 1 (10 points)

Une solution S₁, utilisée pour déboucher les canalisations, contient de l'hydroxyde de sodium (ou soude) de formule NaOH.

On veut déterminer sa concentration en hydroxyde de sodium. La solution étant trop concentrée, on la dilue 1000 fois. On obtient alors une solution diluée S₂.

La mesure du pH de la solution S_2 donne pH = 11,8.

- 1. Calculer la concentration molaire de la solution S₂ en ions hydronium H₃O⁺.
- 2. En déduire la concentration molaire de la solution S2 en ions hydroxyde OH-.
- 3. Déterminer alors la concentration molaire de la solution S₁ en ions hydroxyde.
- 4. En déduire la concentration massique de la solution S₁ en hydroxyde de sodium.
- On a préparé 500 mL de la solution diluée S₂.
 Déterminer le volume de solution S₁ qu'il a fallu prélever.

Données : - Produit ionique de l'eau à 25 °C : $K_e = [H_3O^+] \times [OH^-] = 10^{-14}$

- Masses molaires atomiques en g.mol-1: H:1 O:16 Na:23

EXERCICE 2 (10 points)

La lumière est essentielle à la vie. Sa composition et ses propriétés jouent un rôle important pour les êtres vivants.

- La lumière blanche, visible, est une lumière polychromatique.
 Définir le terme polychromatique.
- Sur l'annexe (à rendre avec la copie) figure une classification des radiations électromagnétiques en fonction de leur longueur d'onde λ.
 Situer, sur cette classification, les radiations infrarouges (IR) et ultraviolettes (UV).
- 3. On considère une radiation UV de longueur d'onde $\lambda = 300$ nm. (1 nm = 10 -9 m)
 - 3.1 Calculer la fréquence ν de cette radiation.
 - 3.2 Déterminer l'énergie E1 transportée par un photon de cette radiation.
- L'énergie E₂ transportée par un photon d'une radiation IR est E₂ = 2,34.10 19 J.
 Comparer les valeurs de E₁ et E₂.
 En déduire la nature de la radiation la plus énergétique.

Données: - célérité ou vitesse de la lumière : c = 3.10 8 m.s -1

- Energie d'un photon : $E = h \cdot \frac{c}{\lambda}$
- h: constante de Planck; $h = 6,62.10^{-34} \text{ J.s}$

BECD

MINISTERE DE L'AGRICULTURE

EXAMEN:

Nom:

(EN MAJUSCULES)

Spécialité ou Option :

Prénoms:

EPREUVE:

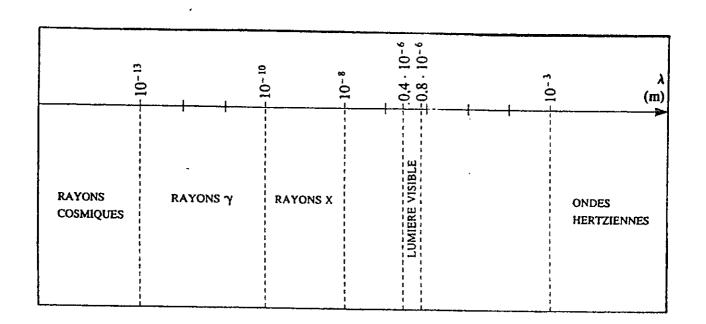
Date de naissance :

19

Centre d'épreuve :

Date:

N° ne rien inscrire


N° ne rien inscrire

SESSION 2000

Antilles - Guyane

BAC PRO TOUTES OPTIONS

(à compléter et à rendre avec la copie)

